Подводные корабли науки
Много причин влияет на плавучесть, и поэтому лодки снабжаются не только указателями глубины, но и самопишущими термометрами, а иногда также и измерителями солености.
На управлении лодкой по глубине может сказаться и циркуляция вод в океане, вызванная совместным действием ветра (поверхностные слои передают напряжение подстилающим) и разностями температуры и плотности. Механизм этой циркуляции сводится к следующей схеме. Когда поверхность воды охлаждается при соприкосновении с холодным воздухом или в результате испарения (отбирающего тепло) или же когда из-за испарения или замерзания увеличивается соленость, то увеличивается и плотность воды. Если эти процессы достаточно интенсивны, то воды в поверхностном слое становятся тяжелее, чем подстилающие, и опускаются. Относительно более легкие воды поднимаются на их место, и, таким образом, возникает вертикальная циркуляция. Едва заметные изменения температуры и солености могут вызвать перепады давления, которые приводят в вертикальное и горизонтальное движение целые океаны.
Уже говорилось, что подводную лодку точнее было бы назвать ныряющей, поскольку под водой она может передвигаться ровно столько, насколько хватает энергии аккумуляторных батарей. В подводном положении работа двигателя внутреннего сгорания невозможна: он сразу «съест» весь запас кислорода, и экипажу станет нечем дышать. Правда, с появлением на лодках (пока – военных) атомных двигателей все изменилось. Теперь время движения под водой – не проблема.
Проблемой до сих пор остается скорость. Современная аккумуляторная лодка может давать 15 узлов (это около 28 километров в час) подводного хода, и то на короткое время. На какие только ухищрения не идут инженеры и конструкторы, но скорость растет медленно, в то время как в авиации за недолгий сравнительно срок достигнут колоссальный рост скоростей.
Интересно отметить, что одна из помех движению надводного судна отсутствует у подводных лодок – это поверхностная волна, расходящаяся при движении от каждого борта. На создание двух таких волн уходит большая часть (до нескольких сотен лошадиных сил) общей мощности судна, а это, конечно, не проходит бесследно: скорость заметно снижается. А вот лодке такие потери не угрожают: если ей придана хорошо обтекаемая форма, то при той же мощности она может двигаться в подводном положении быстрее, чем в надводном.
Наконец, связь. Для нее вода как физическая среда создает ряд специфических трудностей. Даже в самой прозрачной океанической воде (она имеет зелено-голубой цвет) можно увидеть предмет на расстоянии всего в несколько десятков метров. Применение радио и, стало быть, радиолокации чрезвычайно ограниченно из-за непроницаемости воды для электромагнитных волн. Ведутся работы по применению для подводного обнаружения и связи квантовых генераторов (лазеров), но они еще не вышли из стадии эксперимента.
Остается звук. Пока это единственно надежное средство для передачи информации под водой, хотя и тут есть свои трудности. Во всяком случае, экипаж подводной лодки принимает решения и действует при гораздо меньшем объеме информации, чем, например, экипаж самолета.
Скорость звука в воде близка к 1500 метров в секунду. Это много ниже скорости распространения электромагнитных волн, так что сведения об удаленных событиях заметно запаздывают. Кроме того, звуковая волна в воде по сравнению с волной в воздухе характеризуется высокими давлениями и малыми смещениями. Это совершенно меняет характер микрофонов и излучателей, заставляя применять магнитострикционные и пьезоэлектрические преобразователи. Звук весьма слабо передается через поверхность раздела вода – воздух, в другую среду переходит ничтожная часть падающей волны. Следовательно, поверхность моря является почти идеальным отражателем звуковых волн.